
1

Adaptive Enforcement of Interface
Assertions
CCA Forum

Portland, Oregon
April 28, 2005

Tamara L. Dahlgren
dahlgren1@llnl.gov

UCRL-PRES-xxxxxx

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

2

Research on adaptive interface
assertion enforcement.

Target
Scientific applications built of components

Well-defined interfaces

Focus
Demonstrating correctness during deployment

Plug-and-play components

Goal
Maximize failure detection within performance
overhead constraints

Adapted from “Improving Scientific Software Component Quality Through Assertions,” SE-HPCS ’05.Adapted from “Improving Scientific Software Component Quality Through Assertions,” SE-HPCS ’05.

3

Software correctness is a
challenge in scientific computing.

[Dubois03][Dubois03]

Errors can occur at any of these points!

Sun Model

x = y * z

Algorithm Software

sun()

4

Reliance on components will
exacerbate correctness concerns.
Risks include…

Misuse
Third-party
Binary

Complexity
Different implementation languages

Untested features
Unanticipated input data
Poorly tested paths

Executable assertions will become increasingly important.Executable assertions will become increasingly important.

2

5

12.5%

23.6%

28.2%

31.5%
34.2% 35.5% 36.4%

34.2%

24.9%

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 16 32 64 128 256 512 1024 2048

Work Set Size (# Entities)

A
ve

ra
ge

 P
er

fo
rm

an
ce

 O
ve

rh
ea

d

But performance overhead can be
unacceptable during deployment.

array argument size (linear assertions) 6

Research relies on automatically
generated enforcement.

vector
Utilities

package vector version 1.2 {
class Utilities { …

double norm(in array<double> u,
in double tol);

require u != null; dimen(u) == 1;
tol >= 0.0;

ensure result >= 0.0;
nearEqual(result, 0.0, tol) iff

nearEqual(u, 0.0, tol);
… }

}

package vector version 1.2 {
class Utilities { …

double norm(in array<double> u,
in double tol);

require u != null; dimen(u) == 1;
tol >= 0.0;

ensure result >= 0.0;
nearEqual(result, 0.0, tol) iff

nearEqual(u, 0.0, tol);
… }

}

Stub Code

Impl Code

Intermediate Rep

Skeleton Code

Preconditions

Postconditions

vector.sidl

7

Gained insights through initial
experiments using mesh component1.

f = # faces

Assertion
Complexity

O(1)

O(f)

Mesh traversal algorithms (3)

Enforcement
Policies (5)

overhead and
effectiveness

Input Array
Sizes (9)

argument size,
repetition, and

processing effects

Input
Files (5)

repetition and
processing effects

30 times each30 times each 1Implementation by Lori Diachin 8

The five enforcement policies
included simple sampling strategies.

Never

Always

Periodic

Random

Adaptive Timing

3

9

Findings confirmed expectations
and led to new ideas.

0.2%

16.3%
17.4%

0.9% 1.1%

4.3%

-0.1%-0.4%
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Always Periodic Random Adaptive Timing

A
ve

ra
ge

 P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Constant time assertions Linear time assertions

1.0% 2.0%

57.8%

1.0% 2.0% 2.0%
0%

10%

20%

30%

40%

50%

60%

Periodic Random Adaptive Timing

In
vo

ca
tio

ns
 C

he
ck

ed

Constant time assertions Linear time assertions

Invoked methods whose
assertions were checked
Invoked methods whose
assertions were checked

Average performance
overhead

Average performance
overhead

10

20.0%

2.0%

61.3%

0%

10%

20%

30%

40%

50%

60%

70%

Periodic Random Adaptive Timing

E
rr

or
s D

et
ec

te
d

Adaptive Timing was clearly more
effective in these experiments.

Subject to
sampling bias

Subject to
sampling bias

150 failures 30 3 92

11

So now pursuing policies aimed at
automatically tuning enforcement.

0.2%

16.3%
17.4%

0.9% 1.1%

4.3%

-0.1%-0.4%
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Always Periodic Random Adaptive Timing

A
ve

ra
ge

 P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Constant time assertions Linear time assertions

GOAL:
Maximize failure

detection capability
within overhead limit!

App1 App2 App3 App4

12

In order to be effective, need
heuristics to guide enforcement.

Suggestions, questions, or components?
Please contact me at dahlgren1@llnl.gov or (925) 423-2685.

Suggestions, questions, or components?
Please contact me at dahlgren1@llnl.gov or (925) 423-2685.

“Typical” interface assertions?
Which types are important/critical?

Corrupt data
Invalidate results

Which types lead to component
assembly failures?

4

Adaptive Enforcement of
Interface Assertions

The End

